Aldosterone/Mineralocorticoid receptor stimulation induces cellular senescence in the kidney.

نویسندگان

  • Yu-Yan Fan
  • Masakazu Kohno
  • Hirofumi Hitomi
  • Kento Kitada
  • Yoshihide Fujisawa
  • Junichi Yatabe
  • Midori Yatabe
  • Robin A Felder
  • Hiroyuki Ohsaki
  • Kazi Rafiq
  • Shamshad J Sherajee
  • Takahisa Noma
  • Akira Nishiyama
  • Daisuke Nakano
چکیده

Recent studies demonstrated a possible role of aldosterone in mediating cell senescence. Thus, the aim of this study was to investigate whether aldosterone induces cell senescence in the kidney and whether aldosterone-induced renal senescence affects the development of renal injury. Aldosterone infusion (0.75 μg/h) into rats for 5 weeks caused hypertension and increased urinary excretion rates of proteins and N-acetyl-β-D-glucosaminidase. Aldosterone induced senescence-like changes in the kidney, exhibited by increased expression of the senescence-associated β-galactosidase, overexpression of p53 and cyclin-dependent kinase inhibitor (p21), and decreased expression of SIRT1. These changes were abolished by eplerenone (100 mg/kg/d), a mineralocorticoid receptor (MR) antagonist, but unaffected by hydralazine (80 mg/liter in drinking water). Furthermore, aldosterone induced similar changes in senescence-associated β-galactosidase, p21, and SIRT1 expression in cultured human proximal tubular cells, which were normalized by an antioxidant, N-acetyl L-cysteine, or gene silencing of MR. Aldosterone significantly delayed wound healing and reduced the number of proliferating human proximal tubular cells, while gene silencing of p21 diminished the effects, suggesting impaired recovery from tubular damage. These findings indicate that aldosterone induces renal senescence in proximal tubular cells via the MR and p21-dependent pathway, which may be involved in aldosterone-induced renal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone and end-organ damage.

PURPOSE OF REVIEW This review highlights recent clinical studies demonstrating the contribution of aldosterone to cardiovascular mortality, vascular dysfunction, and renal injury in the context of advances in our understanding of the molecular biology of aldosterone. RECENT FINDINGS Mineralocorticoid receptor antagonism reduces mortality in patients with congestive heart failure and following...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Does Mineralocorticoid Receptor Antagonism Prevent Calcineurin Inhibitor-Induced Nephrotoxicity?

Calcineurin inhibitors have markedly reduced acute rejection rates in renal transplantation, thus significantly improved short-term outcome. The beneficial effects are, however, tampered by acute and chronic nephrotoxicity leading to interstitial fibrosis and tubular atrophy, which impairs long-term allograft survival. The mineralocorticoid hormone aldosterone induces fibrosis in numerous organ...

متن کامل

USP2-45 represses aldosterone mediated responses by decreasing mineralocorticoid receptor availability.

BACKGROUND/AIMS Ligand activation of the mineralocorticoid receptor (MR) induces several post-translational modifications (PTMs). Among the different PTMs, MR is known to be dynamically ubiquitylated with impact on its stability and transcriptional activity. Previously, we have shown that MR is monoubiquitylated at the basal state and that aldosterone stimulation induces monoubiquitylation remo...

متن کامل

Maintained ENaC trafficking in aldosterone-infused rats during mineralocorticoid and glucocorticoid receptor blockade.

Aldosterone induces redistribution of epithelial sodium channel (ENaC) to the apical plasma membrane from intracellular vesicles in renal connecting tubule (CNT) and cortical collecting duct (CCD). The role of the classical mineralocorticoid receptor (MR) in ENaC trafficking is still debated. We examined whether the MR antagonist spironolactone affects ENaC regulation in the kidney cortex of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 152 2  شماره 

صفحات  -

تاریخ انتشار 2011